Search results for "Fiber-reinforced composite"
showing 10 items of 17 documents
Dynamic Mechanical Behavior Analysis of Flax/Jute Fiber-Reinforced Composites under Salt-Fog Spray Environment
2020
Over the last decades, natural fiber-reinforced polymer composites (NFRPs) gained great attention in several engineering fields thanks to the reduction of the environmental impact and the end-of-life cost disposal. Unfortunately, the use of NFRPs is limited, mainly due to their weak resistance against humid environments. Since limited literature is available about the evolution of the dynamic mechanical response of NFRPs under aggressive environments, this paper aims to investigate the damping properties of flax, jute and flax/jute epoxy composites exposed to salt-fog up to 60 days. Furthermore, sodium bicarbonate fiber treatment was performed to improve the composites&rsquo
Micro damage and cracking in fibre reinforced composites by a novel hybrid numerical technique
2020
Article number 0033974 AIP Incluida en Conference Proceedings 2309 The prediction of failure mechanisms in fibre-reinforced composite materials is of great importance for the design of composite engineering applications. With the aim of providing a tool able to predict and explain the initiation and propagation of damage in unidirectional fiber reinforced composites, in this contribution we develop a micromechanical numerical model based on a novel hybrid approach coupling the virtual element method (VEM) and the boundary element method (BEM). The BEM is a popular numerical technique, efficient and accurate, which has been successfully applied to interfacial fracture mechanics problems of f…
Apparent interfacial shear strength of short-flax-fiber/starch acetate composites
2016
Abstract The paper deals with an indirect industry-friendly method for identification of the interfacial shear strength (IFSS) in a fully bio-based composite. The IFSS of flax fiber/starch acetate is evaluated by a modified Bowyer and Bader method based on an analysis of the stress–strain curve of a short-fiber-reinforced composite in tension. A shear lag model is developed for the tensile stress–strain response of short-fiber-reinforced composites allowing for an elastic-perfectly plastic stress transfer. Composites with different fiber volume fractions and a variable content of plasticizer have been analyzed. The apparent IFSS of flax/starch acetate is within the range of 5.5–20.5 MPa, de…
Comparative evaluation between glass and polyethylene fiber reinforced composites: A review of the current literature
2017
Background Fiber reinforced composite (FRC) is a promising class of material that gives clinicians alternative treatment options. There are many FRC products available in the market based on either glass or polyethylene fiber type. The aim of this study was to present a comparison between glass and polyethylene fiber reinforced composites based on available literature review. Material and methods A thorough literature search, with no limitation, was done up to June 2017. The range of relevant publications was surveyed using PubMed and Google Scholar. From the search results, articles related to our search terms were only considered. An assessment of these articles was done by two individual…
The effect of surface treatment with Er: YAG laser on shear bond strength of orthodontic brackets to fiber-reinforced composite
2014
Objectives: This study aimed to investigate the effect of surface treatment with Er:YAG laser on shear bond strength (SBS) of orthodontic brackets to fiber-reinforced composite (FRC). Study Design: Ninety human premolars were randomly divided into six groups of 15. FRC bars were bonded to the teeth with a flowable composite (FC) and then underwent following treatments. In group 1 no further treatment was performed. In group 2 the FRC surfaces were covered by FC. An Er:YAG laser was employed to treat FRCs in groups 3 ( 200 mJ/10 Hz) and 4 (300 mJ/15 Hz). The FRC strips in groups 5 and 6 were first covered by FC and then irradiated with Er:YAG laser at 200 mJ/10 Hz (group 5) or 300 mJ/15 Hz (…
Prediction of crack onset strain in composite laminates at mixed mode cracking
2009
Failure process of continuous fiber reinforced composite laminates in tension usually starts with appearance of intralaminar cracks. In composite laminates with complex lay-ups and/or under combined loading, intralaminar cracks may develop in plies with different reinforcement directions. A necessary part of mixed mode cracking models is the criterion of failure. For propagation-controlled fracture it is usually formulated in terms of energy release rates and their critical values of the particular composite material. Intralaminar fracture toughness of unidirectionally reinforced glass/epoxy composite was experimentally determined at several mode I and mode II ratios. It is found that the c…
On nonlinear behavior in brittle heterogeneous materials
2006
Abstract Many modern fiber-reinforced composite materials are ‘brittle’, in the sense that their strain to failure under quasi-static loading is typically of the order of 1% when loaded in directions generally controlled by fiber fracture, and the energy-to-failure under the quasi-static loading curve is typically small. For this reason, analysis of these materials is typically done under assumptions of linear elasticity, usually for homogeneous materials or material layers in a laminate. This is in contrast to ‘ductile’ metal behavior in which elastic–plastic behavior is widely discussed. What is most remarkable is the fact that for long-term behavior, the situation is nearly reversed in m…
Comparative In Vitro Study of the Bond Strength of Composite to Carbon Fiber Versus Ceramic to Cobalt–Chromium Alloys Frameworks for Fixed Dental Pro…
2020
Purpose: The aim of this comparative in vitro study was to assess the bond strength and mechanical failure of carbon-fiber-reinforced composites against cobalt&ndash
Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment
2019
Abstract Aim of the current study is to investigate how an innovative and eco-friendly chemical treatment based on sodium bicarbonate solution (10 wt%) can improve the aging resistance in marine environment of epoxy based composites, reinforced with flax and jute fibers. To this scope, treated and untreated fiber reinforced composites were manufactured through vacuum infusion technique. The resulting composites were then exposed to salt-fog spray conditions up to 60 days, according to ASTM B117 standard. The assessment of their durability was made by means of tensile, flexural quasi-static tests and Charpy impact tests. Furthermore, the water uptake evolution of each composite was monitored…
Effect of Fiber-Reinforced Composite and Elastic Post on the Fracture Resistance of Premolars with Root Canal Treatment—An In Vitro Pilot Study
2020
(1) Background: To analyze the fracture resistance of endodontically upper premolar teeth restored with glass fiber reinforced posts, glass fiber elastic posts, conventional composite resin (CR) and glass fiber reinforced composite (FRC) resins as restorations. (2) Methods: Seventy premolars were submitted to root canal treatment and restored with the following restorative materials (n = 10): A. FRC posts restored with resin